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Mode-coupling theory for the shear viscosity in supercooled liquids
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The mode-coupling theory for the shear viscosity for supercooled liquids is generalized so that, in addition
to density-fluctuation pairs, current-fluctuation pairs are taken into account. As a consequence the wave-vector
and frequency-dependent shear viscosity reproduces in addition to the structural relaxation anomalies the
known hydrodynamic long-time tail. In the supercooled state there appears a temperature-sensitive crossover
from structural relaxation to the hydrodynamic long-time anomjgL063-651X98)14005-9

PACS numbe(s): 64.70.Pf, 61.20.Lc, 66.28d

[. INTRODUCTION common feature is the stretching phenomenon. The
relaxation peak cannot be described by a simple exponential
Since the molecular-dynamics studies of hard disks andecay; but it can often be fitted reasonably well by a
hard spheres by Alder and Wainwright and Alder and Alleystretched exponential, the Kohlrausch 1g42,13. The mi-
[1-4] it is well known that some dynamic correlation func- croscopic origin of the slowing down is the cage effect,
tions, e.g., the velocity autocorrelation function, exhibit awhich is a well-known phenomenon in liquid dynamics. The
nonexponential decay for long times of the fornf’2, where  particles rattle in cages formed by their neighbors, before
d is the dimension of the underlying system. This fractal lawthey find the possibility to change their positions over a
does not possess an intrinsic time scale. For long times theearest-neighbor distance. Each particle movement implies
dynamics of the systems separates from the microscopic mdherefore a highly cooperative rearranging of the cages.
tion and is determined by long-living correlations. Memory  Leutheussef14] and Bengtzeliust al. [15] proposed a
effects are important and reflect the cooperativity of the reself-consistent mode-coupling theory which identified the
laxation process on long-time scales. Alder and Wainwrighfeedback of stress and density relaxation via the cage effect
demonstrated that their results can consistently be interpreteab the driving mechanism of a glass transition. Depending on
within a hydrodynamic model. A numerical solution of the density and temperature one finds ergodic and nonergodic
Navier-Stokes equations describes the simulation data afteolutions. The theory predicts an ideal glass transition in the
only 20 mean collision times. A backflow pattern is built up sense of Edwards and Andersdr®]. There appears a bifur-
which originates from the local displacement of liquid by acation singularity in the dynamics, which separates liquid
moving tagged particle. These long-time tails are alsdrom glass states. Near the glass-transition singularity
present in the correlation functions that determine the shedeading- and next-to-leading-order asymptotic solutions have
viscosity. Ernstet al. [5—7] derived the asymptotic time be- been worked oufl17]. This work, which is reviewed to a
havior of these correlation functions on the basis of a localarge extent in Refs[18-20, established some universal
equilibrium assumption and the linearized Navier-Stokedeatures of the bifurcation scenario, such as, e.g., scaling
equations. The prefactors of the long-time tails are shown téaws.
depend only on the transport coefficients of the liquid. In the In this paper we generalize the mode-coupling theory of
framework of kinetic theory Dorfman and Cohen could sumsupercooled liquids of the shear viscosity so that it is pos-
up elaborate sequences of collisions of hard spheres arsible to describe the cage effect and the long-time tails
identified the microscopic origin of the long-time tails in within the same framework. The theory uses Kawasaki's fac-
leading order of a density expansif8]. It turns out that the torization approximatioi21,22 for a transversal force cor-
same ring collisions which cause the long-time tails are alsoelation kernel and thereby couples the transversal-stress-
responsible for the nonexistence of an analytic expansion densor correlation function to density- and current-fluctuation
the transport coefficients in powers of the dengéiy-11]. pairs. This frequency- and wave-vector-dependent kernel de-
On the other hand, supercompressed or supercooled ligcribes the crossover from structural-relaxation dynamics to
uids exhibit a variety of unusual relaxation processes, oftetthe hydrodynamic long-time tail. The expression for the ker-
referred to as glassy dynamics. Whereas in gases and norntal resembles the result of a mode-coupling theory for the
simple liquids the magnitude of the transport coefficient carcollective dynamics obtained by Munakata and Igar§28ij.
be estimated by dimensional considerations, the relevantheir expression, however, does not yield the established
time scales in glassy liquids depend sensitively on tempergsrefactor for the long-time tail nor does it give the same
ture and density. This variation cannot be understood in theage-effect contribution as formulated in Réf5]. We
framework of activated processes over some energy barri@larify the question of how the long-time tail is suppressed
in the sense of an Arrhenius law. This rapid slowing down ofnear the glass-transition singularity. A simple scaling analy-
the relaxation manifests itself in the appearance of low-sis explains the sensitive crossover from a singular square-
frequencya peaks in the susceptibility spectfd2], which  root behavior to regular variation of the reactive part of the
are connected to the structural relaxation of the liquid. Along-wavelength shear viscosity.
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Il. BASIC FORMULAS T oy TeoT o m 3
The statistical description of a many-particle dynamics is a(H=( Jq|e | Jq) N (30)
done conventionally in terms of correlation functions. A sys-
tem of N identical particles of mas®, enclosed in a cube of Momentum conservation guarantees tmag(t) vanishes
volume V, shall be considered. The thermodynamic limit proportional tog? if g—0. The relation to the time- and
with densityn=N/V will be anticipated. The particles inter- wave-vector-dependent shear wscospt}(t) and the corre-
act via a rotational invariant pair potential. The |mpI|cat|onsspond|ng kmematlc shear viscosity(t) is given bqu(t)
of translational, rotational, and time-reversal invariance shalk= g2 77,(t)/(mn) = g?v,(t).
be used throughout this paper. From the set of dynamical The relaxation kernel will now be treated within a mode-
variablesA,B a Hilbert space shall be constructed as usualcoupling approximation. As discussed in the Introduction,
exploiting (A|B) = B(5A* 6B),5X=X—(X),B=1/(kgT) as the relevant fluctuating dynamical variables are chosen to be
scalar product. The brack€t denotes canonical averaging. the density -fluctuation pair@kgp and the current-fluctuation
The dynamical variables that we are interested in are thBalrSJ i where p=g—Kk. These are the simplest modes

fluctuating ~ density q=3; €9’ and currents i which can cause low- -frequency singularitiesNt](t). The
in(pi“/m)e'q r,, wherea=x,y,z and Fi , pI for |—1,.._J\| density pairs are slow because of the tendency to structural
denote particle positions and momenta, respectively. An imarrest[15] and the current pairs are slow because of the
portant quantity is the normalized intermediate scatteringnomentum conservation laj27]. Because of the symmetry
function®,(t), i.e., the correlator for density fluctuations for k< p one needs only to consider paks:p with some order
wave vectoﬁ: @q(t)=(9d(t)|9d)/(NBSq)- It depends only relation. This eonvention avoids douhle counting. I_\lote that
on the wave-vector modulus= |a|_ The prefactor incorpo- these two—pxartlcle modes are even with respect to time inver-
rates the static structure fact®,= (e eq)/(NB) and is  Sion asislj;. The pair modegyj ; have zero overlap with
chosen to enforce the initial conditioh,(t=0)=1. Ejg because these variables have different time-inversion
The normalized current autocorrelation fU”Ct@iﬁ(t) parity, and therefore the modeg;j; are not considered as
=(j= (t)|JB)m/N splits into longitudinal and transversal relevant. The two-particle-mode matrix elements driven by

parts the reduced Liouville operata®’£Q" are approximated by
products of the unprojected single-particle dynani2g].
aBy _ NalBal aB_ anB\d T Thus the following approximations will enter the calculation
(1) =GP + (8- q°aP) DY), () e g.app
of My(t):
L T .
where ®4(t) and ®(t) now only depend on the wave- <9EQS eXD(—IQTCQTt)QEf%Q%(QE(UQE/)(QS(UQ&),
vector modulusy. Unit vectors are indicated by hats, e.g., (43)
q*=q?/q. In this paper we focus on the transversal pia&t
The density correlation functio®, and the longitudinal part 92 exp(—iQTLOT) o o)~ 2* () op
CD are supposed to be known. They will enter the equations ik o a 25~ )
for the transversal correlations. Note that because of the par- X( i§*(t)ea/>, (4b)

ticle number conservation they are related via

ca [:} o T T akx ,B*
F2D(1) = —QZL(0), @ (0 exp=iQTLQ™i i g )=y (Dif )iy (t)J(4>C)

whereﬂz—qzl(mﬁ Sy). The characteristic frequendy, de-  In particular, this implies a factorization of the static four-

fines the time scale of the microscopic motion. In particularparticle correlations in terms of known two-particle correla-

from Eq. (2) one derives the short-time expansion of thetions. Restricting oneself tt<p, k’<p’, one obtains

density correlation function®q(t)=1—(Qt)%2+0(t%).

The time evolution is enerated by the Hermltlan Liouvillian * 0% 00 V~N25->, 5=~

L, A(t)=exp(—iLt); c%mpare Refi{24—zﬂ for details. (e Qka’Qp’) N* Ok 255 S (54
The transversal current correlation function can be ex-

B S\
pressed in terms of a relaxation kernel within the formalism (i **Qk’Qp’>”0’ (5b)
of Zwanzig and Mori[24—27. Let us choosej parallel to ,
the z direction and introduce the projection operatBf @ «
e " G151k~ g O 55 0797 (50

=j* PIM/NI(j | The perpendicular projector is denoted by
QT 1-P". One derives the exact equation of motion .
Thus one can write the projectd? onto the subspace

spanned by the denS|ty and current pairs as the sum of two
o P (t)+J q(t t )(D (t)dt'= (33 prOJectorsP 739,_,+73“
. . 1
which relates the transversal current correlators to the corre- Poo= E leker) W(w%" (6a)
lation functions of the transversal fluctuation forces: k<p p
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k<p ap

ka
(6b) (X (D) =NBT S -ady(1). (12

The mode-coupling scheme now consists of sandwiching th@vith Egs. (4b), (8), and(7) one obtains
reduced time-evolution operator by projection operators
exp(—iQLOt) —P exp(-iQLOt)P and performing the ap- - q d’k q
proximations in Egs(4). The thermodynamic limit has to be Mg ™ ()=~ 2?3 kpSkS (et CpPy)
performed by the rule o
3 X (ksz+ kxpz) é’tq)k(t)[?tq)p(t)- (13)
1 1 d°k .
V& 2m)3 ™ The last term in Eq(9) is obtained from the expression of
o Eq. (10) with both projectors®,, replaced byP;; . This term
Translational invariance impligs+ p to match the external deals with the coupling of the fo_rces to current pairs and Wi||
momentum, saﬁ. In order to simplify notation we drop all be sho_vvn t_o lead to the long-time _ta|l. The mode-coupling
S - > . - > approximation Eq(4c) and the matrix elements E(B) ex-
a.k+p and trealp merely as an abbreviation for—k. ress this part by current-correlation functions. By Eb
The overlap matrix elements of the transversal force wit hese currepnt cor};elation functions can be decemyosed into
the density pairs has been discussed befibbe1d and the longitudinal and transversal parts. The result readg
one with current pairs is also evaluated easily exploiting the 9 P
identity (CA|B) = —i({A*,B}) where{,} denotes the Poisson

bracket: Mg ()= meﬂ f %g{&zﬁwkxﬁz)%k(t)@;(t)
(Liglekep)= %NSKSp(kXCk+ PxCp), +[(1—K2)(1—p2) + 2k,k,p,py
\ +(1-K3)(1-p2) 1P ()P (1) +2[kZ(1— P}
ki)~ ragld o7+ 7o) ® — 2Rykpupo+ AL PHIOLOOD). (14

Herec, denotes the direct correlation function connected toNote that in the limitq— 0 all three mode-coupling contri-
Sy by the Ornstein-Zernike relatio®,= 1/(1—nc,) [24,25. butlons to the relaxation kerni j(t) vanish proportional to
The relaxation kerneM () splits naturally into four parts: 2 ensuring the correct hydrodynamic limit of the liquid
T _ 2. re T cag T mixe T Itt state. . .
Mg(t) =gt +MJ P9+ Mg ™)+ Mg "(b). Equations(3a), (9), (11), (13), and(14) are the basic for-

C) mulas of the theory. They represent a closed set of equations
for the transversal current correlator. The input quantities
consist of the static structure fact8y, the Markovian fric-
tion constantvg and the density-correlation functl(ﬁhq(t)

The longitudinal current-correlation functioh: q(t) can be
evaluated from Eq(2). Notice that the bare mteractlon po-
tential does not appear explicitly. The dependence on poten-
tial and on external control parameters like temperature and
densny is hidden in the structure facty or the Ornstein-
Zernike direct correlation functiorc,, respectively. The
mode-coupling approximation thus contains only the renor-
malized interaction. Because the static structure factor ap-
pears to be rather insensitive to details of the microscopic
interaction, one expects a certain robustness of the theory.

The first term is a regular contribution and reflects the rap-
idly decaying modes which are not explicitly taken into ac-
count by the mode-coupling approximation. If one is con-
cerned only with the long-time dynamics this term can be
replaced by a Markovian fr|ct|omreg(t)—>v°5(t 0).

The second term in Ed9) is the coupling to the density
pairs and reflects the cage effect, which is a well-known
concept in liquid dynamic$26]. It is derived from the ex-
pression

[ Poo eXpiQTLAT) Pl LiM/N. (10

Applying the approximation, Eq4a), and using Eq(8) one
obtains[15,18
Ill. LONG-TIME TAILS

3

M7 93t)= j d k The long-time tails are hidden in the quanti;, "*. For
2mg vanishing external wave vectgr—0 the integrals ovek are
X (K Cy+ pxCp)2¢k(t)<Dp(t)- (11)  easily performed. Let us first consider the contribution from

the coupling to®T®T in Eq. (14), which yields the contri-
The term that contains the density-current correlation is debution to the shear viscosity:
rived from the two analogous expressions Edf) with one
projectorﬁeg replaced byf?”. The continuity equation can TT e\ _ f 2 T2 A2 T2
be used to express the density-current correlation function in ~°© ()= mnﬁ (2w )3[1 k ~lct 2k LD
terms of a time derivative ob(t): (15
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In the hydrodynamic limit, the transversal current correlatorg,®,(t) and®(t) are smaller by a factor 4/ 1/72, respec-

deals with a diffusive shear mode tively, than®,(t) except for small wave vectde. Smallk
T ) contributions are important only for the determination of the
Py (1) =exp(— vk7). (160 |ong-time tails.M{ ™*{t) does not contribute to the latter.

LT i i i
Here v denotes the dc kinematic shear viscosity. As usuairheq) @' term does not contribute either to the long-time

. . L L . . . - .
one shows that thik—0 contribution yields the leading tﬁ'l in Eq. |(14)' Thed~d _bco_ntrlbut|on y'EISSq?T“(ng'ta“Vﬂy
long-time asymptote: the same long-time contribution teg,(t) as the term.

The next simplification consists of ignoring the contribution
7 1 MT ™edt) and all terms ifM] ™(t) except thebT®T cou-
Tty = q . s B S
vo ()= 15mng (8o t—oo. (A7) pling. This approximation is certainly not fully justified, be-
cause it ignores the long-time tail of EO), which is re-
The second contribution to the long-time behavior arisesponsible for the leading nonanalytjcvariation of the shear
from the coupling tod-®" in Eq. (14), viscosity[29]. But, for the further discussion these simplifi-
) i cations do not lead to qualitative modifications. The rapid
~on crossover is already understood in terms of the cage effect
v (0)= mng f (2m)3 NEAUIR 18 and thedT®T coupl?/ng. °
The Markovian frictionvg can be neglected in compari-
The hydrodynamic limit of the longitudinal current correlator son to the cage-effect contributions. An ultraviolet cutaff

deals with sound waves: has to be introduced in order to make the integral in (£4)
convergent. The mode-coupling approximation is not suited
q)k(t):EestkztIZ(eikct_i_efikct). (19) to trealt short-time dy_namics _which deal with change of
2 short-distance correlations. It is therefore a standard proce-

dure to eliminate unjustified contributions by short-time cut-
Here c and I's denote the speed of sound and the soundys [26]. However, this procedure does not guarantee the
attenuation constant, respectively. For long times, @8  positivity of the spectra, which has to be checked then only

again approaches a power-law relaxation afterwards to justify the method. We prefer to eliminate the
unphysical terms by a wave-vector cutoff since thereby the

LL L 1 analytic properties of the kernel are not altered. The long-

ng (4=wlt) time behavior is not affected by either route. Bipolar coordi-

. .. nhates for the evaluation of the wave-vector integral are ex-
One convinces oneself that there are no further Cont”bu“onﬁedient Let us measure wave numbers in units\o&nd

to the leading long-time behavior of the shear viscosity.,. : : = .
. ) times in units of [y30m2(nNA~3)/7]/(Avy) Wwith vy,
Equations(17) and(20) reproduce results of the calculations =1/\/m_,8 denoting the thermal velocity. Correspondingly,

for dilute gases with the assumption of local equilibrium ! . L o TT s
[5-7]. In the low-density limit these are exact results, whichthe tl.me—depzendentz klmfr??atlc V'SCOSW,K (1) is measur.ed
have also been derived in the framework of generalized Units of 7v/(307°nA ). The resulting set of equations

Boltzmann equationgs]. reads
t
IV. LOW-FREQUENCY SPECTRUM aPg(t) = —qu [v9t) +vg (1) P4 (t—t")dt’,
OF THE SHEAR VISCOSITY 0
(213
A. Further simplifying approximations
()P
In this section we discuss the low-frequency behavior of veoRt) = e 7, (21b
the shear viscosity in the supercooled state. The density- s 2
correlation function has to be evaluated within a separate 7 , _ 1 1k<1>Tt dk atk k—k; [ 1 N 1
theory, e.g., the mode-coupling theory of supercooled liquids v (D= 28q Jo k(1) lg-k 2 52 K2
[19]. Hydrodynamic phenomena of the liquid state can be
observed only if the frequencies are smaller than the relax- 5 2| aT
ation rate 1 of the a-process contribution to the structural + p?k?q?(k P97 Pp(pdp. (219
relaxation[18,28. For frequencies» exceeding 1# the sys-
tem behaves like a solid, Eq&l.6) and (19) are invalid, and As a first step let us ignore the wave-vector dependence in

the known long-time anomalies cannot be expected. To studiqg. (21¢). This corresponds to a generalized hydrodynamics
the range of validity of Eq9(17) and(20) as determined by model. One obtains a set of equatiq@4a, (21b), whereas
the structural relaxation we shall consider a generalized hyEq. (210 has to be replaced by its long-wavelength limit
drodynamical regime. It deals with long-wavelength excita-vy(t) = »(t):
tions as does the ordinary hydrodynamics. But it extends the
hydrodynamic regime so that all frequencies of orderdre

considered. In this regime one can replace with a reasonable
accuracy the cage-effect contribution to the generalized vis-

cosity by a stretched exponential or Kohlrausch lawThe frequency-dependent shear viscosity consists of a reac-
Mg ca0qt) — we~ 7* On the time scale, the correlators  tive part vg(w) and a dissipative pant;(w) defined by

v T(t)= f lk2<I>I(t)2d K. (219
0
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FIG. 1. Time-dependent shear viscositft) for the generalized
hydrodynamics model, Eq&219, (210, and(21d), for parameters FIG. 2. Real partv’'(w) and imaginary part”(w) of the dy-
Bo=0.6, u=10 and increasing-relaxation timesr=1/10,v2/10, = namical shear, Eq22), as a function of frequency for the results
1/5,v2/5, 2/5, 2/2/5. Units are specified in Sec. IV A. shown in Fig. 1. The dashed-dotted straight line indicates the von
Schweidler asymptote, E5), for 7=2v2/5. The circles mark the
Y o ) , ® crossover pointsdcy, Vo) -
vq(w)=f0 vy(t)sin wtdt, Vq(w)=f0 v4(t)cos wtdt.

(22) this scale. In supercooled liquidss very large and therefore
the first contribution in Eq(23) dominates the second one.
For frequenciess> 7! one identifies the von Schweidler-
B. Results )

law asymptote of thev process:

Figure 1 exhibits numerical solutions for the viscosity
v(t)=v%9{t)+ »"7(t) for the generalized hydrodynamics V(0>1Un)=pu sinmBI2) 7 Pw P T(1+B), (25
model on logarithmic scales. The curves are calculated with
a discrete set of 100 equally spaced wave-vector moduli. The
cooling of the liquid results in a rapid increase of the
relaxation timer [12]. Here it is changed on a logarithmic
scale; successive curves differ inby a factor ofv2. The ) _ ) _
Kohlrausch-law long-time tail crosses over within a narrow The reactive part of the shear viscositj(w), in contrast,
time window aroundt~ 10 to the long-time-tail relaxation exhibits the Iow—f_requency nonanalytic contributions; there
proportional tot ~¥2. The range of parameters is chosen suctfPPears a flattening towards the square-root anomaly. _The
that the short-distance cutoff does not dominate the behavigroSSover frequency near., that separates the nonanalytic
of the curves. The initial value at=0 is then determined by from the regular part ot"(w) sensitively depends on the
«. Not until a decrease of the correlateft) of four or five  time scaler. The high-frequency part of'(w) is in leading
decades the long-time tail sets in. The crossover time inrder independent ?fi the curves fall on top of each other
creases with increasing-relaxation time. With increasing ~ for frequencieso>7"". o _ _
the amplitude of the long-time tail decreases. This results in Figure 3 exhibits the variation of the dc shear viscosity
a crossing of the correlator curves. v=7'(0=0), the peak heighty,.,=V"(wmad, and the peak

The long-time tail leads to a nonanalytic low-frequency POSItion oy, Of the reactive part of the shear viscosity as a
behavior. Here we take into account only the long-time tailfunction of thea-correlation timer.

V(w>1r)=ulw—u cod 7BI2) 7 Pw PTII(1+ B).
(26)

due to a pair of diffusive shear modes, Ef7). The low- Different strategies are possible to define a crossover fre-
frequency spectrum is then given by quency for the onset of the Iong-time anomaly. We divided
v"(w) by 0®* Then thew'? part transforms into a decreas-
, 7 ing o~ Y law whereas the regular contributienw translates
v'(0—0)=v— 240mnm B2 Vo, 23 o an increasings'* wing. Between these two asymptotes

there is a shallow minimum. We define this minimum fre-
7 guency as the crossover frequeney, of v"(w) and the
V' (0—0)= 240mnm B2 Vo, (249 corresponding viscosity value ag,=1"(wy). The cross-
over points are included in Fig. 2 as circles. Figure 4 exhibits
wherev=1'(w=0)~ 7 denotes the kinematic viscosity. The the crossover frequenay., and the crossover viscosity,,
frequency-dependent shear viscosity for our model is exhibas a function of thex-time scaler. Even thoughris changed
ited in Fig. 2. One observes an almost constant dissipativenly by a factor of 42, the crossover frequency shifts by
part v’ (w), i.e., a white noise spectrum, up to frequenciesmore than five orders of magnitude. Similarly, the crossover
o~ 7 1. The square-root anomaly, E@3), is not visible on  viscosity drops by almost four decades.
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FIG. 3. The dc shear viscosity (»=0) (diamonds, the maxi- FIG. 5. Time- and wave-vector-dependent shear viscositt)

"

mum heightvy, .= V' (wnmay (triangles, and the corresponding peak
position frequencyw . (Squaresas a function of thex-time scale
7 for the results shown in Fig. 2. The full lines are the asymptotic

laws; the prefactors are chosen such that the curves match the last
point. nentially on the wave number. If one assumes for both cor-

relators its hydrodynamic limit one obtains
While the zero-wave-vector shear viscosity exhibits the

within the model Eqs(213, (21b), and (21¢ for parameterss,
=0.6, =10 and 7=0.0009. Subsequent curves differ in wave-
vector modulugy by 0.01.

long-time tail proportional ta~%?, the nonzero-wave-vector <I>I(t)<l>;(t) ~exp( — 2vk?t+ 2vq- kt— vgt)

shear correlation function relaxes exponentially. However, L.

there appears a finite time window where the shear correla- =exy —2v(k—0/2)%t]exp — vq*t/2).

tion functionv,(t) is almost indistinguishable from its long- (27)

wavelength counterpart. Figure 5 exhibits numerical solu-
tions of Egs.(219, (21b), and(21¢ using a discrete set of

200 wave vectors. For times shorter or comparable to th
a-time scaler the curves fall on top of each other. However, exp(—1g?/2). This observation fits in the picture of the

for times larger compared tothe curves fan out. The relax- long-time tail as a consequence of two interfering diffusive
ation crosses over from a power law to exponential relax_shegar modes. A small m?smat@hof the two shea? modes
ation. A rough explanation is given by the following argu- ;

ment. The vertex in Eq(14) is regular in the limitq—0 results in a perturbation of the flow profile on large length

However, the transversal current correlators depend exp&cales. NOt _unt|| the remaining correla’qon arises f“".“ a
small region in wave-number space that is comparable in its

size with the mismatcly does an exponential decay evolve.
In particular, the theory predicts a prefactor for this interme-
diate long-time tail that is independent @f Merely the ex-
tent of the range where the shear correlation function exhib-
its an intermediate long-time tail is sensitively dependent on
the external wave number We do not expect the details of
the g variation to be correct because the sound modes are
known to lead also to a nonanalytic dispersion relation for
the shear viscosity with respect qp[29].

Figure 6 exhibits the frequency-dependent shear viscosity
for different wave numbers. The real par&(w) is domi-

fter integrating over all wave numbeksthere remains as
ominating factor the exponentially fast relaxing term

2 nated by the Fourier transform of the Kohlrausch function.
-3 log. V" T’ The reactive part, however, exhibits on its low-frequency
_4 glO co . _ _ oy .
wing a wave-number-sensitive feature. pr 0 one finds a
‘ . . . — bending from the low-frequency anomaly to regular relax-
0.1 0.2 03 04 05 06

ation at the crossover frequenay,,. For nonzeroq there
1 appears a second crossover. For very low frequencies one
FIG. 4. Double logarithmic representation of the crossover freinfers a range of regular relaxation, which reflects the expo-
quencyw, (circles and the corresponding valué(we) = v, (i-  nential decay of the shear correlation function in the time
angles as a function of ther-time scaler for the shear correlation domain. At higher frequencies a range follows that reflects
exhibited in Fig. 1. The straight lines indicate the asymptotic lawsthe long-time tail and accordingly exhibits @/ law. In
Egs.(29) and(30). between one identifies a knee. At even higher frequencies
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2 \:\ » Weo ? (29

AN
SN, . . . .
3 10g10\;l (@) N The height of the crossover point is also easily calculated.
4l 4 N Evaluating Eq(28) for the crossover frequency E@9) one
N obtains

\\\\\\ " 1

Vi~ 5. (30)

The prediction of Eqs(29) and (30) are indicated in Fig. 4
by straight solid lines. Note that in the derivation of the rapid

| 1 variation for the crossover point in the reactive part of the
shear viscosity no assumption for the shape of #hpeak
was needed. The results therefore do not rely on the Kohl-
rausch law but hold equally well for other shapes of the
primary relaxation peak. The shape of theelaxation pro-

FIG. 6. Real partvg(w) and imaginary parvg(w) of the dy-  cess merely determines the factors of order unity left out in
namical shear for the results shown in Fig. 5. The dashed-dottegtqs (29) and (30).

straight line indicates the von Schweidler asymptote, (2§).

N _ V. CONCLUSION
but below thea-peak position one observes again a range of

regular relaxation. In Fig. 6 this range extends up to the peak In this paper we presented a theory for the wave-number-
maximum. The reactive part of the shear viscosity is characand frequency-dependent shear viscosity in the framework of
terized by a sequence of different power laws separated bijpe mode-coupling theory. The derived equations naturally
two crossover frequencies. For large wave numptite two ~ generalize the mode-coupling theory of supercooled liquids
crossover frequencies merge and one finds only regular ré15,18. The coupling to current pairs permits us to describe
laxation on the low-frequency wing of the peak. Let us the hydrodynamic long-time tails of the shear viscosity and
remark that a fine tuning of the parametaras necessary in the slowing down due to structural relaxation within a uni-
order to observe all these mentioned features within the nuied theory. The approximations result in a memory kernel
merically accessible time and frequency window. For suffi-that splits naturally into four parts. The first one describes the
ciently small wave number the correlators are close to it§oupling to all fast decaying relaxation channels and results
long-wavelength counterpart for times smaller than an some regular contribution to the shear viscosity. The sec-
g-dependent crossover time or frequencies larger than @nd one contains the coupling to density fluctuations and is
g-sensitive crossover frequency. The qualitative features arésponsible for the cage effect; it yields the rapid increase of
thus not affected by the appearance of additi@pabnsitive the dc shear viscosity due to the slowing down of the struc-
crossover phenomena. tural relaxation. The third one includes time derivatives of
Let us add some general qualitative considerations. Thée density fluctuations and reflects the coupling of density
a-time scale increases rap|d|y by |owering the temperatur@.nd |0ngitudinal currents. Fina”y, the fourth one contains
and so does the dc shear viscosity. This in turn implies ®roducts of current correlation functions. The physical pic-
suppression of the amplitude in the long-time tail, Ety).  ture behind these terms is the backflow which also provides
Thus glassy relaxation suppresses more and more the |0ng_demonstrat|ve explanano_n_of the long-time tails. The ver-
time anomaly and the crossover becomes visible only beloces of the theory are explicitly wave-vector dependent and

some crossover frequenay,,. Thea peak in the dissipative
part remains nearly unchanged and, according to E2§.
and (24), the shear viscosity scales a5(w—0)~ 7,v"(w

incorporate the interaction potential only indirectly via the
static structure factor. The long-time behavior of the differ-
ent contributions to the shear viscosity is calculated analyti-

regular linear spectrum for' (w). The maximum value is
located atw~1/7 and is of the order,

V(e w<lr)~7(w7).

(28)

The asymptotic dependence of the dc shear viscasifw
=0), the peak height in the reactive paft,,, and the maxi-
mum positionw ,,, 0N 7 are indicated in Fig. 3 by solid lines.
The scaling behavior of the crossover frequengy is now

sive shear modes and two interfering sound modes match
those of earlier calculations. The equations have to be regu-
larized at high wave numbers. The breakdown of mode-

coupling theories at short distances is not a new phenom-
enon. However, the low-frequency behavior of the shear
viscosity is not sensitive to changes in the cutoff, provided

the cutoff is not chosen too large.

Within a generalized hydrodynamic approximation of the
theory the low-frequency behavior of the shear viscosity is
calculated. The dominant contribution arises from the cou-
pling to density modes. All other contributions are small, but

determined by matching the two asymptotic descriptionscontain the long-time tails and thus become important for
Egs. (24) and (28): 7-*3’2w§{,2~ T we. Thus the crossover very long times. The crossover in the reactive part of the
frequency scales as shear viscosity from regular relaxation to a nonanalytic spec-
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trum due to the long-time tail is examined. The observedover frequency on temperature makes a fine-tuning proce-
suppression of the hydrodynamic long-time tail due to inter-dure necessary in order to observe the long-time-tail anoma-
ference with structural relaxation corroborates a reasoning bljes in supercooled liquids. Therefore it will be quite hard to
Kirkpatrick and Nieuwoud{30] for an apparent long-time observe the crossover from structural-relaxation dynamics to
tail seen in molecular-dynamics wofl81]. These authors the long-time tail.

argued that the short-wavelength contributions of the cage

effect lead to slow relaxation in depse I|qm_ds thqt obscure ACKNOWLEDGMENTS

the appearance of the hydrodynamic long-time tails. In this
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