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Mode-coupling theory for the shear viscosity in supercooled liquids

T. Franosch and W. Go¨tze
Physik-Department, Technische Universita¨t München, 85747 Garching, Germany

~Received 3 December 1997!

The mode-coupling theory for the shear viscosity for supercooled liquids is generalized so that, in addition
to density-fluctuation pairs, current-fluctuation pairs are taken into account. As a consequence the wave-vector
and frequency-dependent shear viscosity reproduces in addition to the structural relaxation anomalies the
known hydrodynamic long-time tail. In the supercooled state there appears a temperature-sensitive crossover
from structural relaxation to the hydrodynamic long-time anomaly.@S1063-651X~98!14005-9#

PACS number~s!: 64.70.Pf, 61.20.Lc, 66.20.1d
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I. INTRODUCTION

Since the molecular-dynamics studies of hard disks
hard spheres by Alder and Wainwright and Alder and All
@1–4# it is well known that some dynamic correlation fun
tions, e.g., the velocity autocorrelation function, exhibit
nonexponential decay for long times of the formt2d/2, where
d is the dimension of the underlying system. This fractal l
does not possess an intrinsic time scale. For long times
dynamics of the systems separates from the microscopic
tion and is determined by long-living correlations. Memo
effects are important and reflect the cooperativity of the
laxation process on long-time scales. Alder and Wainwri
demonstrated that their results can consistently be interpr
within a hydrodynamic model. A numerical solution of th
Navier-Stokes equations describes the simulation data
only 20 mean collision times. A backflow pattern is built u
which originates from the local displacement of liquid by
moving tagged particle. These long-time tails are a
present in the correlation functions that determine the sh
viscosity. Ernstet al. @5–7# derived the asymptotic time be
havior of these correlation functions on the basis of a lo
equilibrium assumption and the linearized Navier-Stok
equations. The prefactors of the long-time tails are show
depend only on the transport coefficients of the liquid. In
framework of kinetic theory Dorfman and Cohen could su
up elaborate sequences of collisions of hard spheres
identified the microscopic origin of the long-time tails
leading order of a density expansion@8#. It turns out that the
same ring collisions which cause the long-time tails are a
responsible for the nonexistence of an analytic expansio
the transport coefficients in powers of the density@9–11#.

On the other hand, supercompressed or supercooled
uids exhibit a variety of unusual relaxation processes, o
referred to as glassy dynamics. Whereas in gases and no
simple liquids the magnitude of the transport coefficient c
be estimated by dimensional considerations, the relev
time scales in glassy liquids depend sensitively on temp
ture and density. This variation cannot be understood in
framework of activated processes over some energy ba
in the sense of an Arrhenius law. This rapid slowing down
the relaxation manifests itself in the appearance of lo
frequencya peaks in the susceptibility spectra@12#, which
are connected to the structural relaxation of the liquid.
571063-651X/98/57~5!/5833~8!/$15.00
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common feature is the stretching phenomenon. Thea-
relaxation peak cannot be described by a simple expone
decay; but it can often be fitted reasonably well by
stretched exponential, the Kohlrausch law@12,13#. The mi-
croscopic origin of the slowing down is the cage effe
which is a well-known phenomenon in liquid dynamics. T
particles rattle in cages formed by their neighbors, bef
they find the possibility to change their positions over
nearest-neighbor distance. Each particle movement imp
therefore a highly cooperative rearranging of the cages.

Leutheusser@14# and Bengtzeliuset al. @15# proposed a
self-consistent mode-coupling theory which identified t
feedback of stress and density relaxation via the cage e
as the driving mechanism of a glass transition. Depending
density and temperature one finds ergodic and nonerg
solutions. The theory predicts an ideal glass transition in
sense of Edwards and Anderson@16#. There appears a bifur
cation singularity in the dynamics, which separates liqu
from glass states. Near the glass-transition singula
leading- and next-to-leading-order asymptotic solutions h
been worked out@17#. This work, which is reviewed to a
large extent in Refs.@18–20#, established some universa
features of the bifurcation scenario, such as, e.g., sca
laws.

In this paper we generalize the mode-coupling theory
supercooled liquids of the shear viscosity so that it is p
sible to describe the cage effect and the long-time t
within the same framework. The theory uses Kawasaki’s f
torization approximation@21,22# for a transversal force cor
relation kernel and thereby couples the transversal-str
tensor correlation function to density- and current-fluctuat
pairs. This frequency- and wave-vector-dependent kernel
scribes the crossover from structural-relaxation dynamics
the hydrodynamic long-time tail. The expression for the k
nel resembles the result of a mode-coupling theory for
collective dynamics obtained by Munakata and Igarashi@23#.
Their expression, however, does not yield the establis
prefactor for the long-time tail nor does it give the sam
cage-effect contribution as formulated in Ref.@15#. We
clarify the question of how the long-time tail is suppress
near the glass-transition singularity. A simple scaling ana
sis explains the sensitive crossover from a singular squ
root behavior to regular variation of the reactive part of t
long-wavelength shear viscosity.
5833 © 1998 The American Physical Society
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II. BASIC FORMULAS

The statistical description of a many-particle dynamics
done conventionally in terms of correlation functions. A sy
tem ofN identical particles of massm, enclosed in a cube o
volume V, shall be considered. The thermodynamic lim
with densityn5N/V will be anticipated. The particles inter
act via a rotational invariant pair potential. The implicatio
of translational, rotational, and time-reversal invariance s
be used throughout this paper. From the set of dynam
variablesA,B a Hilbert space shall be constructed as usu
exploiting (AuB)5b^dA* dB&,dX5X2^X&,b51/(kBT) as
scalar product. The bracket^& denotes canonical averagin
The dynamical variables that we are interested in are
fluctuating density %qW5( ie

iqW •rW i and currents j qW
a

5( i(pi
a/m)eiqW •rW i, wherea5x,y,z and rW i , pW i for i 51,...,N

denote particle positions and momenta, respectively. An
portant quantity is the normalized intermediate scatter
functionFq(t), i.e., the correlator for density fluctuations fo
wave vectorqW : Fq(t)5(%qW(t)u%qW)/(NbSq). It depends only
on the wave-vector modulusq5uqW u. The prefactor incorpo-
rates the static structure factorSq5(%qW u%qW)/(Nb) and is
chosen to enforce the initial conditionFq(t50)51.

The normalized current autocorrelation functionFqW
ab(t)

5( j qW
a(t)u j qW

b)m/N splits into longitudinal and transversa
parts

FqW
ab

~ t !5q̂aq̂bFq
L~ t !1~dab2q̂aq̂b!Fq

T~ t !, ~1!

where Fq
L(t) and Fq

T(t) now only depend on the wave
vector modulusq. Unit vectors are indicated by hats, e.g
q̂a5qa/q. In this paper we focus on the transversal partFq

T .
The density correlation functionFq and the longitudinal par
Fq

L are supposed to be known. They will enter the equati
for the transversal correlations. Note that because of the
ticle number conservation they are related via

] t
2Fq~ t !52Vq

2Fq
L~ t !, ~2!

whereVq
25q2/(mbSq). The characteristic frequencyVq de-

fines the time scale of the microscopic motion. In particu
from Eq. ~2! one derives the short-time expansion of t
density correlation functionFq(t)512(Vqt)2/21O(t4).
The time evolution is generated by the Hermitian Liouvillia
L, A(t)5exp(2iLt); compare Refs.@24–27# for details.

The transversal current correlation function can be
pressed in terms of a relaxation kernel within the formali
of Zwanzig and Mori@24–27#. Let us chooseqW parallel to
the z direction and introduce the projection operatorPT

5u j qW
x)@m/N#( j qW

xu. The perpendicular projector is denoted
QT512PT. One derives the exact equation of motion

] tFq
T~ t !1E

0

t

Mq
T~ t2t8!Fq

T~ t8!dt850, ~3a!

which relates the transversal current correlators to the co
lation functions of the transversal fluctuation forces:
s
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Mq
T~ t !5~Lj qW

xue2 iQTLQTtuLj qW
x
!

m

N
. ~3b!

Momentum conservation guarantees thatMq
T(t) vanishes

proportional toq2 if q→0. The relation to the time- and
wave-vector-dependent shear viscosityhq(t) and the corre-
sponding kinematic shear viscositynq(t) is given byMq

T(t)
5q2hq(t)/(mn)5q2nq(t).

The relaxation kernel will now be treated within a mod
coupling approximation. As discussed in the Introductio
the relevant fluctuating dynamical variables are chosen to
the density-fluctuation pairs%kW%pW and the current-fluctuation
pairs j kW

a
j pW
b where pW 5qW 2kW . These are the simplest mode

which can cause low-frequency singularities inMq
T(t). The

density pairs are slow because of the tendency to struct
arrest @15# and the current pairs are slow because of
momentum conservation law@27#. Because of the symmetr
kW↔pW one needs only to consider pairskW,pW with some order
relation. This convention avoids double counting. Note t
these two-particle modes are even with respect to time in
sion as isLj qW

x . The pair modes%kW j pW
a have zero overlap with

Lj qW
x because these variables have different time-invers

parity, and therefore the modes%kW j pW
a are not considered a

relevant. The two-particle-mode matrix elements driven
the reduced Liouville operatorQTLQT are approximated by
products of the unprojected single-particle dynamics@22#.
Thus the following approximations will enter the calculatio
of Mq

T(t):

^%kW
* %pW

* exp~2 iQTLQTt !%kW8%pW 8&'^%kW
* ~ t !%kW8&^%pW

* ~ t !%pW 8&,
~4a!

^ j kW
a* j pW

b* exp~2 iQTLQTt !%kW8%pW 8&'^ j kW
a* ~ t !%kW8&

3^ j pW
b* ~ t !%pW 8&, ~4b!

^ j kW
a* j pW

b* exp~2 iQTLQTt ! j kW8
g

j pW 8
d

&'^ j kW
a* ~ t ! j kW8

g
&^ j pW

b* ~ t ! j pW 8
d

&.
~4c!

In particular, this implies a factorization of the static fou
particle correlations in terms of known two-particle corre
tions. Restricting oneself tokW,pW , kW8,pW 8, one obtains

^%kW
* %pW

* %kW8%pW 8&'N2dkWkW8dpW pW 8SkSp , ~5a!

^ j kW
a* j pW

b* %kW8%pW 8&'0, ~5b!

^ j kW
a* j pW

b* j kW8
g

j pW 8
d

&'
N2

b2m2 dkWkW8dpW pW 8d
agdbd. ~5c!

Thus one can write the projectorP̌ onto the subspace
spanned by the density and current pairs as the sum of
projectorsP̌5P̌%%1P̌j j :

P̌%%5 (
kW,pW

u%kW%pW )
1

N2bSkSp
~%kW%pW u, ~6a!
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P̌j j 5 (
kW,pW

(
ab

u j kW
a
j pW
b)

m2b

N2 ~ j kW
a
j pW
bu. ~6b!

The mode-coupling scheme now consists of sandwiching
reduced time-evolution operator by projection operat
exp(2iQLQt)→P̌ exp(2iQLQt)P̌ and performing the ap
proximations in Eqs.~4!. The thermodynamic limit has to b
performed by the rule

1

V (
kW,pW

¯→
1

2 E d3k

~2p!3 ¯ . ~7!

Translational invariance implieskW1pW to match the externa
momentum, sayqW . In order to simplify notation we drop al
dqW ,kW1pW and treatpW merely as an abbreviation forqW 2kW .

The overlap matrix elements of the transversal force w
the density pairs has been discussed before@15,18# and the
one with current pairs is also evaluated easily exploiting
identity (LAuB)52 i^$A* ,B%& where$,% denotes the Poisso
bracket:

~Lj qW
xu%kW%pW !5

n

m
NSkSp~kxck1pxcp!,

~Lj qW
xu j kW

b
j pW
g
!5

N

m2b
@qbdxg1qgdxb#. ~8!

Herecq denotes the direct correlation function connected
Sq by the Ornstein-Zernike relationSq51/(12ncq) @24,25#.
The relaxation kernelMq

T(t) splits naturally into four parts:

Mq
T~ t !5q2nq

reg~ t !1Mq
T cage~ t !1Mq

T mixed~ t !1Mq
T ltt~ t !.

~9!

The first term is a regular contribution and reflects the r
idly decaying modes which are not explicitly taken into a
count by the mode-coupling approximation. If one is co
cerned only with the long-time dynamics this term can
replaced by a Markovian frictionnq

reg(t)→nq
0d(t20).

The second term in Eq.~9! is the coupling to the density
pairs and reflects the cage effect, which is a well-kno
concept in liquid dynamics@26#. It is derived from the ex-
pression

„Lj qW
xuP̌%% exp~ iQTLQTt !P̌%%uLj qW

x
…m/N. ~10!

Applying the approximation, Eq.~4a!, and using Eq.~8! one
obtains@15,18#

Mq
T cage~ t !5

n

2mb E d3k

~2p!3 SkSp

3~kxck1pxcp!2Fk~ t !Fp~ t !. ~11!

The term that contains the density-current correlation is
rived from the two analogous expressions Eq.~10! with one
projectorP̌%% replaced byP̌j j . The continuity equation can
be used to express the density-current correlation functio
terms of a time derivative ofFk(t):
e
s

h

e

o

-
-
-
e

n

-

in

^%kW
* ~ t ! j kW

a
&5Nb21Sk

ka

k
] tFk~ t !. ~12!

With Eqs.~4b!, ~8!, and~7! one obtains

Mq
T mixed~ t !52E d3k

~2p!3

q

kp
SkSp~ckkx1cppx!

3~ k̂zp̂x1 k̂xp̂z!] tFk~ t !] tFp~ t !. ~13!

The last term in Eq.~9! is obtained from the expression o
Eq. ~10! with both projectorsP̌%% replaced byP̌j j . This term
deals with the coupling of the forces to current pairs and w
be shown to lead to the long-time tail. The mode-coupli
approximation Eq.~4c! and the matrix elements Eq.~8! ex-
press this part by current-correlation functions. By Eq.~1!
these current-correlation functions can be decomposed
longitudinal and transversal parts. The result reads

Mq
T ltt~ t !5

q2

2mnb E d3k

~2p!3 $~ k̂zp̂x1 k̂xp̂z!
2Fk

L~ t !Fp
L~ t !

1@~12 k̂z
2!~12 p̂x

2!12k̂zk̂xp̂zp̂x

1~12 k̂x
2!~12 p̂z

2!#Fk
T~ t !Fp

T~ t !12@ k̂z
2~12 p̂x

2!

22k̂xk̂zp̂xp̂z1 k̂x
2~12 p̂z

2!#Fk
L~ t !Fp

T~ t !%. ~14!

Note that in the limitq→0 all three mode-coupling contri
butions to the relaxation kernelMq

T(t) vanish proportional to
q2 ensuring the correct hydrodynamic limit of the liqu
state.

Equations~3a!, ~9!, ~11!, ~13!, and~14! are the basic for-
mulas of the theory. They represent a closed set of equat
for the transversal current correlator. The input quantit
consist of the static structure factorSq , the Markovian fric-
tion constantnq

0, and the density-correlation functionFq(t).
The longitudinal current-correlation functionFq

L(t) can be
evaluated from Eq.~2!. Notice that the bare interaction po
tential does not appear explicitly. The dependence on po
tial and on external control parameters like temperature
density is hidden in the structure factorSq or the Ornstein-
Zernike direct correlation functioncq , respectively. The
mode-coupling approximation thus contains only the ren
malized interaction. Because the static structure factor
pears to be rather insensitive to details of the microsco
interaction, one expects a certain robustness of the theo

III. LONG-TIME TAILS

The long-time tails are hidden in the quantityMq
T ltt . For

vanishing external wave vectorq→0 the integrals overkW are
easily performed. Let us first consider the contribution fro
the coupling toFTFT in Eq. ~14!, which yields the contri-
bution to the shear viscosity:

n0
TT~ t !5

1

mnb E d3k

~2p!3 @12 k̂z
22 k̂x

212k̂z
2k̂x

2#@Fk
T~ t !#2.

~15!
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In the hydrodynamic limit, the transversal current correla
deals with a diffusive shear mode

Fk
T~ t !5exp~2nk2t !. ~16!

Here n denotes the dc kinematic shear viscosity. As us
one shows that thisk→0 contribution yields the leading
long-time asymptote:

n0
TT~ t !5

7

15mnb

1

~8pnt !3/2, t→`. ~17!

The second contribution to the long-time behavior ari
from the coupling toFLFL in Eq. ~14!,

n0
LL~ t !5

2

mnb E d3k

~2p!3 k̂z
2k̂x

2@Fk
L~ t !#2. ~18!

The hydrodynamic limit of the longitudinal current correlat
deals with sound waves:

Fk
L~ t !5

1

2
e2Gsk

2t/2~eikct1e2 ikct!. ~19!

Here c and Gs denote the speed of sound and the sou
attenuation constant, respectively. For long times, Eq.~18!
again approaches a power-law relaxation

n0
LL~ t !5

1

15mnb

1

~4pGst !
3/2, t→`. ~20!

One convinces oneself that there are no further contribut
to the leading long-time behavior of the shear viscos
Equations~17! and~20! reproduce results of the calculation
for dilute gases with the assumption of local equilibriu
@5–7#. In the low-density limit these are exact results, whi
have also been derived in the framework of generali
Boltzmann equations@8#.

IV. LOW-FREQUENCY SPECTRUM
OF THE SHEAR VISCOSITY

A. Further simplifying approximations

In this section we discuss the low-frequency behavior
the shear viscosity in the supercooled state. The den
correlation function has to be evaluated within a sepa
theory, e.g., the mode-coupling theory of supercooled liqu
@19#. Hydrodynamic phenomena of the liquid state can
observed only if the frequencies are smaller than the re
ation rate 1/t of the a-process contribution to the structur
relaxation@18,28#. For frequenciesv exceeding 1/t the sys-
tem behaves like a solid, Eqs.~16! and~19! are invalid, and
the known long-time anomalies cannot be expected. To st
the range of validity of Eqs.~17! and ~20! as determined by
the structural relaxation we shall consider a generalized
drodynamical regime. It deals with long-wavelength exci
tions as does the ordinary hydrodynamics. But it extends
hydrodynamic regime so that all frequencies of order 1/t are
considered. In this regime one can replace with a reason
accuracy the cage-effect contribution to the generalized
cosity by a stretched exponential or Kohlrausch l
Mq

T cage(t)→me2(t/t)b0. On the time scalet, the correlators
r

l

s

d

s
.

d

f
y-
te
s
e
x-

dy

y-
-
e

le
s-

] tFk(t) andFk
L(t) are smaller by a factor 1/t, 1/t2, respec-

tively, thanFk(t) except for small wave vectork. Small k
contributions are important only for the determination of t
long-time tails.Mq

T mixed(t) does not contribute to the latte
The FLFT term does not contribute either to the long-tim
tail in Eq. ~14!. The FLFL contribution yields qualitatively
the same long-time contribution ton0(t) as theFTFT term.
The next simplification consists of ignoring the contributio
Mq

T mixed(t) and all terms inMq
T ltt(t) except theFTFT cou-

pling. This approximation is certainly not fully justified, be
cause it ignores the long-time tail of Eq.~20!, which is re-
sponsible for the leading nonanalyticq variation of the shear
viscosity @29#. But, for the further discussion these simplifi
cations do not lead to qualitative modifications. The rap
crossover is already understood in terms of the cage ef
and theFTFT coupling.

The Markovian frictionnq
0 can be neglected in compar

son to the cage-effect contributions. An ultraviolet cutoffL
has to be introduced in order to make the integral in Eq.~14!
convergent. The mode-coupling approximation is not sui
to treat short-time dynamics which deal with change
short-distance correlations. It is therefore a standard pro
dure to eliminate unjustified contributions by short-time c
offs @26#. However, this procedure does not guarantee
positivity of the spectra, which has to be checked then o
afterwards to justify the method. We prefer to eliminate t
unphysical terms by a wave-vector cutoff since thereby
analytic properties of the kernel are not altered. The lo
time behavior is not affected by either route. Bipolar coor
nates for the evaluation of the wave-vector integral are
pedient. Let us measure wave numbers in units ofL and
times in units of @A30p2(nL23)/7#/(Lv th) with v th

51/Amb denoting the thermal velocity. Correspondingl
the time-dependent kinematic viscositynq

TT(t) is measured
in units of 7v th

2 /(30p2nL23). The resulting set of equation
reads

] tFq
T~ t !52q2E

0

t

@ncage~ t8!1nq
TT~ t8!#Fq

T~ t2t8!dt8,

~21a!

ncage~ t !5me2~ t/t!b0, ~21b!

nq
TT~ t !5

15

28q E
0

1

kFk
T~ t !dkE

uq2ku

q1k k22kz
2

2 S 1

p2 1
1

k2

1
1

p2k2q2 ~k22p2!2DFp
T~ t !pdp. ~21c!

As a first step let us ignore the wave-vector dependenc
Eq. ~21c!. This corresponds to a generalized hydrodynam
model. One obtains a set of equations~21a!, ~21b!, whereas
Eq. ~21c! has to be replaced by its long-wavelength lim
n0(t)5n(t):

nTT~ t !5E
0

1

k2Fk
T~ t !2dk. ~21d!

The frequency-dependent shear viscosity consists of a r
tive partnq9(v) and a dissipative partnq8(v) defined by
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nq9~v!5E
0

`

nq~ t !sin vtdt, nq8~v!5E
0

`

nq~ t !cosvtdt.

~22!

B. Results

Figure 1 exhibits numerical solutions for the viscos
n(t)5ncage(t)1nTT(t) for the generalized hydrodynamic
model on logarithmic scales. The curves are calculated w
a discrete set of 100 equally spaced wave-vector moduli.
cooling of the liquid results in a rapid increase of thea-
relaxation timet @12#. Here it is changed on a logarithmi
scale; successive curves differ int by a factor of&. The
Kohlrausch-law long-time tail crosses over within a narro
time window aroundt;10 to the long-time-tail relaxation
proportional tot23/2. The range of parameters is chosen su
that the short-distance cutoff does not dominate the beha
of the curves. The initial value att50 is then determined by
m. Not until a decrease of the correlatorn(t) of four or five
decades the long-time tail sets in. The crossover time
creases with increasinga-relaxation time. With increasingt
the amplitude of the long-time tail decreases. This result
a crossing of the correlator curves.

The long-time tail leads to a nonanalytic low-frequen
behavior. Here we take into account only the long-time
due to a pair of diffusive shear modes, Eq.~17!. The low-
frequency spectrum is then given by

n8~v→0!5n2
7

240mnpbn3/2 Av, ~23!

n9~v→0!5
7

240mnpbn3/2 Av, ~24!

wheren5n8(v50);t denotes the kinematic viscosity. Th
frequency-dependent shear viscosity for our model is ex
ited in Fig. 2. One observes an almost constant dissipa
part n8(v), i.e., a white noise spectrum, up to frequenc
v;t21. The square-root anomaly, Eq.~23!, is not visible on

FIG. 1. Time-dependent shear viscosityn(t) for the generalized
hydrodynamics model, Eqs.~21a!, ~21b!, and~21d!, for parameters
b050.6, m510 and increasinga-relaxation timest51/10,&/10,
1/5,&/5, 2/5, 2&/5. Units are specified in Sec. IV A.
th
e
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this scale. In supercooled liquidst is very large and therefore
the first contribution in Eq.~23! dominates the second one
For frequenciesv@t21 one identifies the von Schweidler
law asymptote of thea process:

n8~v@1/t!5m sin~pb/2!t2bv2b21G~11b!, ~25!

n9~v@1/t!5m/v2m cos~pb/2!t2bv2b21G~11b!.
~26!

The reactive part of the shear viscosityn9(v), in contrast,
exhibits the low-frequency nonanalytic contributions; the
appears a flattening towards the square-root anomaly.
crossover frequency nearvco that separates the nonanalyt
from the regular part ofn9(v) sensitively depends on th
time scalet. The high-frequency part ofn9(v) is in leading
order independent oft; the curves fall on top of each othe
for frequenciesv@t21.

Figure 3 exhibits the variation of the dc shear viscos
n5n8(v50), the peak heightnmax9 5n9(vmax), and the peak
positionvmax of the reactive part of the shear viscosity as
function of thea-correlation timet.

Different strategies are possible to define a crossover
quency for the onset of the long-time anomaly. We divid
n9(v) by v3/4. Then thev1/2 part transforms into a decreas
ing v21/4 law whereas the regular contribution}v translates
to an increasingv1/4 wing. Between these two asymptote
there is a shallow minimum. We define this minimum fr
quency as the crossover frequencyvco of n9(v) and the
corresponding viscosity value asnco9 5n9(vco). The cross-
over points are included in Fig. 2 as circles. Figure 4 exhib
the crossover frequencyvco and the crossover viscositynco9
as a function of thea-time scalet. Even thought is changed
only by a factor of 4&, the crossover frequency shifts b
more than five orders of magnitude. Similarly, the crosso
viscosity drops by almost four decades.

FIG. 2. Real partn8(v) and imaginary partn9(v) of the dy-
namical shear, Eq.~22!, as a function of frequencyv for the results
shown in Fig. 1. The dashed-dotted straight line indicates the
Schweidler asymptote, Eq.~25!, for t52&/5. The circles mark the
crossover points (vco,nco9 ).
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While the zero-wave-vector shear viscosity exhibits
long-time tail proportional tot23/2, the nonzero-wave-vecto
shear correlation function relaxes exponentially. Howev
there appears a finite time window where the shear corr
tion functionnq(t) is almost indistinguishable from its long
wavelength counterpart. Figure 5 exhibits numerical so
tions of Eqs.~21a!, ~21b!, and ~21c! using a discrete set o
200 wave vectors. For times shorter or comparable to
a-time scalet the curves fall on top of each other. Howeve
for times larger compared tot the curves fan out. The relax
ation crosses over from a power law to exponential rel
ation. A rough explanation is given by the following arg
ment. The vertex in Eq.~14! is regular in the limitq→0.
However, the transversal current correlators depend ex

FIG. 3. The dc shear viscosityn8(v50) ~diamonds!, the maxi-
mum heightnmax9 5n9(vmax) ~triangles!, and the corresponding pea
position frequencyvmax ~squares! as a function of thea-time scale
t for the results shown in Fig. 2. The full lines are the asympto
laws; the prefactors are chosen such that the curves match th
point.

FIG. 4. Double logarithmic representation of the crossover
quencyvco ~circles! and the corresponding valuen9(vco)5nco9 ~tri-
angles! as a function of thea-time scalet for the shear correlation
exhibited in Fig. 1. The straight lines indicate the asymptotic la
Eqs.~29! and ~30!.
e

r,
a-

-

e

-

o-

nentially on the wave number. If one assumes for both c
relators its hydrodynamic limit one obtains

Fk
T~ t !Fp

T~ t !'exp~22nk2t12nqW •kW t2nq2t !

5exp@22n~kW2qW /2!2t#exp~2nq2t/2!.

~27!

After integrating over all wave numberskW there remains as
dominating factor the exponentially fast relaxing ter
exp(2nq2t/2). This observation fits in the picture of th
long-time tail as a consequence of two interfering diffusi
shear modes. A small mismatchq of the two shear modes
results in a perturbation of the flow profile on large leng
scales. Not until the remaining correlation arises from
small region in wave-number space that is comparable in
size with the mismatchq does an exponential decay evolv
In particular, the theory predicts a prefactor for this interm
diate long-time tail that is independent ofq. Merely the ex-
tent of the range where the shear correlation function exh
its an intermediate long-time tail is sensitively dependent
the external wave numberq. We do not expect the details o
the q variation to be correct because the sound modes
known to lead also to a nonanalytic dispersion relation
the shear viscosity with respect toq @29#.

Figure 6 exhibits the frequency-dependent shear visco
for different wave numbers. The real partnq8(v) is domi-
nated by the Fourier transform of the Kohlrausch functio
The reactive part, however, exhibits on its low-frequen
wing a wave-number-sensitive feature. Forq50 one finds a
bending from the low-frequency anomaly to regular rela
ation at the crossover frequencyvco. For nonzeroq there
appears a second crossover. For very low frequencies
infers a range of regular relaxation, which reflects the ex
nential decay of the shear correlation function in the tim
domain. At higher frequencies a range follows that refle
the long-time tail and accordingly exhibits av1/2 law. In
between one identifies a knee. At even higher frequen

c
last

-

,

FIG. 5. Time- and wave-vector-dependent shear viscositynq(t)
within the model Eqs.~21a!, ~21b!, and ~21c! for parametersb0

50.6, m510 andt50.0009. Subsequent curves differ in wav
vector modulusq by 0.01.
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but below thea-peak position one observes again a range
regular relaxation. In Fig. 6 this range extends up to the p
maximum. The reactive part of the shear viscosity is char
terized by a sequence of different power laws separated
two crossover frequencies. For large wave numberq the two
crossover frequencies merge and one finds only regula
laxation on the low-frequency wing of thea peak. Let us
remark that a fine tuning of the parametert was necessary in
order to observe all these mentioned features within the
merically accessible time and frequency window. For su
ciently small wave number the correlators are close to
long-wavelength counterpart for times smaller than
q-dependent crossover time or frequencies larger tha
q-sensitive crossover frequency. The qualitative features
thus not affected by the appearance of additionalq-sensitive
crossover phenomena.

Let us add some general qualitative considerations.
a-time scale increases rapidly by lowering the temperat
and so does the dc shear viscosity. This in turn implie
suppression of the amplitude in the long-time tail, Eq.~17!.
Thus glassy relaxation suppresses more and more the l
time anomaly and the crossover becomes visible only be
some crossover frequencyvco. Thea peak in the dissipative
part remains nearly unchanged and, according to Eqs.~23!
and ~24!, the shear viscosity scales asn8(v→0);t,n9(v
→0);t23/2v1/2. Above this crossover frequency one finds
regular linear spectrum forn8(v). The maximum value is
located atv;1/t and is of the ordert,

n9~vco!v!1/t!;t~vt!. ~28!

The asymptotic dependence of the dc shear viscosityn8(v
50), the peak height in the reactive partnmax9 , and the maxi-
mum positionvmax on t are indicated in Fig. 3 by solid lines
The scaling behavior of the crossover frequencyvco is now
determined by matching the two asymptotic descriptio
Eqs. ~24! and ~28!: t23/2vco

1/2;t2vco. Thus the crossove
frequency scales as

FIG. 6. Real partnq8(v) and imaginary partnq9(v) of the dy-
namical shear for the results shown in Fig. 5. The dashed-do
straight line indicates the von Schweidler asymptote, Eq.~25!.
f
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vco;
1

t7 . ~29!

The height of the crossover point is also easily calculat
Evaluating Eq.~28! for the crossover frequency Eq.~29! one
obtains

nco9 ;
1

t5 . ~30!

The prediction of Eqs.~29! and ~30! are indicated in Fig. 4
by straight solid lines. Note that in the derivation of the rap
variation for the crossover point in the reactive part of t
shear viscosity no assumption for the shape of thea peak
was needed. The results therefore do not rely on the Ko
rausch law but hold equally well for other shapes of t
primary relaxation peak. The shape of thea-relaxation pro-
cess merely determines the factors of order unity left ou
Eqs.~29! and ~30!.

V. CONCLUSION

In this paper we presented a theory for the wave-numb
and frequency-dependent shear viscosity in the framewor
the mode-coupling theory. The derived equations natur
generalize the mode-coupling theory of supercooled liqu
@15,18#. The coupling to current pairs permits us to descr
the hydrodynamic long-time tails of the shear viscosity a
the slowing down due to structural relaxation within a un
fied theory. The approximations result in a memory ker
that splits naturally into four parts. The first one describes
coupling to all fast decaying relaxation channels and res
in some regular contribution to the shear viscosity. The s
ond one contains the coupling to density fluctuations an
responsible for the cage effect; it yields the rapid increase
the dc shear viscosity due to the slowing down of the str
tural relaxation. The third one includes time derivatives
the density fluctuations and reflects the coupling of den
and longitudinal currents. Finally, the fourth one conta
products of current correlation functions. The physical p
ture behind these terms is the backflow which also provi
a demonstrative explanation of the long-time tails. The v
tices of the theory are explicitly wave-vector dependent a
incorporate the interaction potential only indirectly via th
static structure factor. The long-time behavior of the diffe
ent contributions to the shear viscosity is calculated anal
cally. The prefactors of the long-time tail due to two diffu
sive shear modes and two interfering sound modes m
those of earlier calculations. The equations have to be re
larized at high wave numbers. The breakdown of mo
coupling theories at short distances is not a new phen
enon. However, the low-frequency behavior of the sh
viscosity is not sensitive to changes in the cutoff, provid
the cutoff is not chosen too large.

Within a generalized hydrodynamic approximation of t
theory the low-frequency behavior of the shear viscosity
calculated. The dominant contribution arises from the c
pling to density modes. All other contributions are small, b
contain the long-time tails and thus become important
very long times. The crossover in the reactive part of
shear viscosity from regular relaxation to a nonanalytic sp

ed
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trum due to the long-time tail is examined. The observ
suppression of the hydrodynamic long-time tail due to int
ference with structural relaxation corroborates a reasoning
Kirkpatrick and Nieuwoudt@30# for an apparent long-time
tail seen in molecular-dynamics work@31#. These authors
argued that the short-wavelength contributions of the c
effect lead to slow relaxation in dense liquids that obsc
the appearance of the hydrodynamic long-time tails. In t
paper, we gave a detailed quantitative explanation for
rapid suppression of the long-time anomaly in favor of t
structural relaxation. The sensitive dependence of the cr
ys

ys

.

y

d
-
by

e
e
is
e

s-

over frequency on temperature makes a fine-tuning pro
dure necessary in order to observe the long-time-tail ano
lies in supercooled liquids. Therefore it will be quite hard
observe the crossover from structural-relaxation dynamic
the long-time tail.
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